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Abstract

Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality
syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence
factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the
present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing
antimicrobial resistance and the fact that sick fish don’t eat. In the hopes of identifying vaccine and therapeutic
targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of a Coho
salmon (Oncorhychus kisutch) in Washington State (U.S.A.) in 1989. The genome is 2,715,909 bp with a G+C content
of 32.75%. It contains 6 rRNA operons, 49 tRNA genes, and is predicted to encode 2,329 proteins.

Keywords: Aerobic, Gram negative, Psychrotolerant, Fish pathogen, Flavobacterium, Bacterial cold water disease,
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Introduction
Flavobacterium psychrophilum is a Gram-negative patho-
gen that infects all species of salmonid fish and has been
found to also infect eel and three species of cyprinids [1-3].
It causes bacterial cold water disease (BCWD) and rainbow
trout fry mortality syndrome (RTFS) in fish and is respon-
sible for significant losses in the salmonid aquaculture
industry [1]. Water temperature plays a key role in the
infection and development of disease [4] which occurs
between 4-16°C and is most prevalent at 10°C or below
[5]. It was originally thought to be limited to North
America [6] but it is now recognized in almost every
country in Europe, in some parts of Asia, and in
Australia [1,7].
Three serotypes and two biovars of F. psychrophilum

have been described [7,8]. In addition, molecular analysis
of the population structure of this bacterium suggests
that there are a number of distinct lineages [7]. It has
been speculated that some strains are species specific [9]
while others are location specific [10]. Some strains have
also been observed to cause only either BCWD or RTFS
[7]. A recent study in Japan showed multiple sequence
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types infecting ayu (Plecoglossus altivelis) in a closed lake
environment [11]. It is also known that phase variation
can occur where the colonial phenotype changes be-
tween "rough" and "smooth", perhaps to help in evasion
of the immune system [12]. Generally F. psychrophilum
populations are heterogeneous; however, a recent study
showed closely related epidemic clones infecting rainbow
trout (Oncorhynchus mykiss) in Nordic countries [13]. To
date, only one genome sequence [14] of F. psychrophilum
has been reported and sequences of other strains are re-
quired to gain insight into the molecular mechanisms of
virulence and why some strains are more virulent than
others. Here we present a summary of classification and
features of the F. psychrophilum type strain ATCC 49418
(= DSM 3660 = NCMB = 1947 = LMG 13179 = ATCC
49418) [15] together with a description of the complete
genome and its annotation.
Organism Information
Classification and Features
The taxonomy of F. psychrophilum has been changed
many times since Borg (1960) classified it as Cytophaga
psychrophila based on its biochemical properties [16]. It
was later reclassified within the genus Flexibacter based on
DNA homology and renamed to Flexibacter psychrophilus
[17]. Most recently, it was reclassified to the genus
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Table 1 Classification and general features of Flavobacterium psychrophilum ATCC 49418T

MIGS ID Property Term Evidence codea

Current Classification Domain Bacteria TAS [24]

Phylum Bacteroidetes TAS [25]

Class Flavobacteriia TAS [26,27]

Order Flavobacteriales TAS [23]

Family Flavobacteriacea TAS [18,22]

Genus Flavobacterium TAS [18,28]

Species Flavobacterium psychrophilum TAS [18]

Type strain ATCC 49418 TAS [15,18]

Gram stain Negative TAS [15]

Cell shape Rods TAS [15]

Motility Gliding TAS [15]

Sporulation Non-spore forming TAS [18]

Temperature range Psychrotolerant (4°C to 30°C) TAS [15,29,30]

Optimum temperature 15-20°C TAS [31,32]

Carbon source Non-saccharolytic TAS [18]

Energy source Chemoorganotroph TAS [18]

Terminal electron receptor Oxygen NAS [33]

MIGS-6 Habitat Host TAS [15]

MIGS-6.3 Salinity Usually grows in 0.5% and stops at 1.0% TAS [8,15]

MIGS-22 Oxygen Aerobic TAS [15]

MIGS-15 Biotic relationship Obligate pathogen of fish (but can survive in freshwater for several months) NAS [7]

MIGS-14 Pathogenicity Salmonid fishes, eel, and three species of Cyprinids TAS [1,15]

MIGS-4 Geographic location Worldwide including North America, Europe, and Asia TAS [1,7]

MIGS-5 Sample collection time 1989 TAS [15]

MIGS-4.1 MIGS-4.2 Latitude – Longitude Not reported

MIGS-4.3 Depth Not Reported

MIGS-4.4 Altitude Not Reported
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These
evidence codes are from of the Gene Ontology project [40].
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Flavobacterium and renamed to F. psychrophilum based on
DNA-RNA hybridization [18]. The genus name was derived
from the Latin flavus meaning "yellow" and the ancient
Greek βακτήριον (baktḗrion) meaning "a small rod" giving
the Neo-Latin word Flavobacterium, a "small yellow rod-
Figure 1 Colonial and cellular morphology of F. psychrophilum ATCC 49
shaped bacteria" [19,20]. The species name was derived from
the Greek word psuchros (ψυχρός) meaning "cold" and the
Neo-Latin word philum meaning "loving" which translates to
"cold loving" [19,20]. The genus Flavobacterium consists of
119 recognized species [21]; it belongs to the family
418T grown on cytophaga agar (A) and Gram stained (B) (1000x).
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Figure 2 Phylogenetic tree displaying the relationship between F. psychrophilum ATCC 49418T and selected strains and species of
the same genus. Other genera from the family Flavobacteriaceae were used as an out group. The phylogenetic tree was constructed using the "One
Click" mode with default settings in the Phylogeny.fr platform [41]. This pipeline uses four different programs including MUSCLE [42], Gblock [43], PhyML
[44], and TreeDyn [45]. The numbers above the branches are tree support values generated by PhyML using the aLRT statistical test.

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Finished

MIGS-28 Libraries used None

MIGS-29 Sequencing
platforms

PacBio RS II

MIGS-31.2 Fold coverage 184x

MIGS-30 Assemblers HGAP workflow

MIGS-32 Gene calling
method

NCBI Prokaryotic Genome Annotation
Pipeline, GeneMarkS+

Locus Tag FPG3

GenBank ID CP007207

GenBank Date of
Release

September 12, 2014

BioProject ID PRJNA236029

GOLD ID Gi0074339

Project relevance Fish Pathogen

MIGS-13 Source Material
Identifier

ATCC
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Flavobacteriaceae [18,22] and the order Flavobacteriales
[23] (Table 1).
F. psychrophilum ATCC 49418T was isolated in

Washington State (U.S.A) from the kidney of a young
Coho salmon (Oncorhynchus kisutch) in 1989 [15]. It is a
Gram negative, aerobic, and psychrotolerant microorgan-
ism [7] (Figure 1). When grown on cytophaga agar, bright
yellow, smooth, discreet, circular, convex, and non-
adherent colonies are produced [8]. The optimal growth
temperature is between 15-20°C [31,32] with no growth
occurring at 30°C or greater [15,29,30]. Microscopically it is
rod-shaped measuring 3–7 μm long and 0.3-0.5 μm wide
[8]. Although gliding motility has been reported the
mechanism is yet to be elucidated since F. psychrophi-
lum does not appear to use pili or polysaccharide secre-
tion [1,15,17]. API-ZYM tests show that it can produce
alkaline phosphatase, esterase, lipase, leucine, valine,
and cysteine arylamidases, trypsin, acid phosphatase,
and napthol-AS-BI phosphohydrolase [8]. In addition, it
has been reported that it can produce catalase [29,34]
and oxidase [17], hydrolyze tributyrin and proteins in-
cluding casein, gelatin, elastin, albumin, collagen, and fi-
brinogen [35-39]. Although many strains including
ATTC 49418T cannot metabolize simple and complex
sugars [1] a recent study has shown that some strains
are able to produce two or more sugar degrading en-
zymes including alpha-galactosidase, beta-galactosidase,
alpha-glucosidase, beta-glucosidase, and N-acetyl-beta-
glucosaminidase [8].
A phylogentic tree was constructed using the 16S
rRNA sequences of F. psychrophilum ATCC 49418T, se-
lected strains and species of the same genus, as well as
selected species of other genera belonging to the family
Flavobacteriaceae (Figure 2). The four F. psychrophilum
strains are grouped together in the tree with ATCC
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49418T being most similar to JIP02/86 (ATCC 49511), the
only other strain to have a complete genome sequence.

Genome sequencing information
Genome project history
The complete genome sequence and annotation data of
F. psychrophilum ATCC 49418T have been deposited in
DDBJ/EMBL/GenBank under the accession number
Figure 3 Comparison of F. psychrophilum ATCC 49418T and F. psychro
the outside to the center: Genes on forward strand (blue clockwise arrows), g
JIP02/86 genome (red), RNA genes (tRNAs orange, rRNAs violet, other RNAs g
CP007207. Sequencing and assembly steps as well as
finishing were performed at McGill University and
Génome Québec Innovation Centre. Annotation was
performed using the NCBI Prokaryotic Genome Anno-
tation Pipeline [46] and manually edited in Kodon (Ap-
plied Maths, Austin, TX). Table 2 presents a summary
of the project information and its association with
MIGS version 2.0 compliance [47].
philum JIP02/86 (NC_009613.3) created using CGview [65]. From
enes on reverse strand (blue counter-clockwise arrows), F. psychrophilum
ray), GC content (black), GC skew (purple/olive).
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Table 4 Number of genes associated with the 25 general
COG functional categories

Code Value % of total Description

J 140.0 9.66 Translation

A 0.0 0.00 RNA processing and modification

K 72.0 4.97 Transcription

L 96.0 6.63 Replication, recombination and repair

B 0.0 0.00 Chromatin structure and dynamics
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Growth conditions and DNA isolation
F. psychrophilum ATCC 49418T was originally obtained
from the American Type Culture Collection [15] and
was stored in a frozen glycerol stock (15%) at −70°C. It
was grown for 4 days at 12°C on modified cytophaga agar
[48] containing 0.06% (w/v) tryptone, 0.05% yeast extract,
0.02% beef extract, 0.02% sodium acetate, 0.05% anhyd-
rous calcium chloride, 0.05% magnesium chloride, 0.05%
potassium chloride, 1.5% agar, 0.02% gelatin, pH 7.5. Well
isolated colonies were used for genomic DNA isolation.
Colonies (~ 4 mm3) were picked using a sterile toothpick
and lysed using modified B1 (1 50 mM Tris·Cl, 50 mM
EDTA, 0.5% Tween®-20, 0.5% Triton X-100, pH 8.0) and
B2 (750 mM NaCl, 50 mM MOPS, 15% isopropanol,
0.15% Triton X-100, pH 7.0) buffers. DNA was purified
and eluted using the QIAGEN Plasmid Midi Kit (Qiagen,
Germany) following manufacturer's protocol.

Genome sequencing and assembly
Genome sequencing of F. psychrophilum ATCC 49418T

was performed using a PacBio RS II instrument. The reads
were automatically processed through the Single Molecule
Real Time (SMRT) software suite using the Hierarchical
Genome Assembly Processing (HGAP) pipeline [49]. The
resulting reads (580,625,890 bp in total) were filtered and
the longest reads with 20x coverage were selected as seeds
for constructing preassemblies. The preassemblies were
constructed by aligning the short reads to the long reads
Table 3 Nucleotide content and gene count levels of the
genome

Attribute Genome (total)

Value % of total

Genome size (bp) 2,715,909 100.00%

DNA coding (bp) 2,336,075 86.01%

G+C content (bp) 889,460 32.75%

DNA scaffolds 1

Total genes 2397 100.00%

Protein-coding genes 2,329 97.00%

RNA genes 68 2.84%

Pseudo genes 24 1.00%

Genes in internal clusters N/Da

Genes with function prediction 1881 78.47%

Genes assigned to COGs 1,438 60.00%

Genes assigned Pfam domains 1,933 80.64%

Genes with signal peptides 236 9.85%

Genes with transmembrane helices 506 21.11%

Number of CRISPR candidates 8

Confirmed CRISPR(s) 1

Unconfirmed CRISPR(s) 7
aN/D = not determined.
(seeds). Each read was mapped to multiple seeds using
BLASTR [50]. In total there were 8073 long sequences to-
taling 90,000,401 bp with an average length of 11148 bp
and 162,858 bp short sequences totaling 490,625,489 bp
with an average length of 3013 bp. Since errors in PacBio
are random, aligning the multiple short reads onto the
long reads allows the correction of errors in the long
reads. The optimal number of sequences to be mapped
onto the seeds is controlled by the "-bestn" parameter
and the optimal number was determined to be 12. The
preassembled reads for the seeds are generated using
PBDAG-Con [51] to create corrected consensus sequences
in addition to quality analysis of the seeds. This script uses
multiple sequence alignments and a directed acyclic graph
to produce the best consensus reads possible. It does so by
eliminating the insertion and deletion errors generated
during the sequencing process. In addition, it avoids gener-
ating chimeric sequences (sequences with artifacts) for
D 18.0 1.24 Cell cycle control, mitosis and meiosis

Y 0.0 0.00 Nuclear structure

V 41.0 2.83 Defense mechanisms

T 32.0 2.21 Signal transduction mechanisms

M 145.0 10.01 Cell wall/membrane biogenesis

N 4.0 0.28 Cell motility

Z 1.0 0.07 Cytoskeleton

W 0.0 0.00 Extracellular structures

U 31.0 2.14 Intracellular trafficking and secretion

O 61.0 4.21 Posttranslational modification, protein
turnover, chaperones

C 75.0 5.16 Energy production and conversion

G 51.0 3.52 Carbohydrate transport and metabolism

E 120.0 8.28 Amino acid transport and metabolism

F 54.0 3.73 Nucleotide transport and metabolism

H 96.0 6.63 Coenzyme transport and metabolism

I 63.0 4.35 Lipid transport and metabolism

P 70.0 4.83 Inorganic ion transport and metabolism

Q 26.0 1.79 Secondary metabolites biosynthesis,
transport and catabolism

R 164.0 11.32 General function prediction only

S 89.0 6.14 Function unknown

- 1050 43.80 Not in COGs
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assembly because chimeric reads will have no or low
short sequence coverage. At the end of the process, only
the best preassembled reads without artifacts are sent to
the assembler [52].
After quality analysis and eliminating some of the pre-

assembled reads by PBDAG-Con, the remaining 6,009
reads were fed into the Celera assembler which uses an
overlap-layout-consensus strategy [49]. A total of 2 contigs
were generated with sizes 1,647,861 bp and 1,076,634 bp.
These contigs underwent an additional polishing step
where they were compared against the raw reads and any
artifacts found were removed [49]. The final consensus
generated was analyzed and improved by using the multi-
read consensus algorithm Quiver. Quiver takes the two
contigs and the initial sequencing reads and maps the
reads onto the assemblies [49]. It then disregards the
alignment between the reads and the assemblies and a
consensus is created independently from the reads allow-
ing it to remove any fine-scale errors made by the Celera
assembler [52]. An approximate copy of the consensus se-
quences is then generated by Quiver which makes inser-
tions and deletions and those that improve the maximum
likelihood are applied to the initial consensus sequence
[53]. The two final contigs generated by Quiver were
1,648,613 bp and 1,077,094 bp.
The two contigs underwent a finishing process using

SeqMan Pro (DNASTAR Inc., Madison, WI). The two
contigs were collapsed into one and the sequence was
then opened in a region homologous to the Ori of F.
psychrophilum JIP02/86 resulting in another two contigs.
Table 5 Some putative virulence factors of F. psychrophilum A

Locus tag Gene name Family

FPG3_00455 M50

FPG3_01260 fpp1 M12B

FPG3_01265 fpp2 M43

FPG3_06120 Zn Peptidase

FPG3_06485 hlyD HlyD2

FPG3_10400 hlyD HlyD2

FPG3_00420 MntH

FPG3_00490 FeoA

FPG3_00495 FeoB

FPG3_04340 Peptidase M75

FPG3_04455 TM-ABC Iron Sideroph

FPG3_05120 FeoB

FPG3_06195 CCC1

FPG3_09395 Plant peroxidase like

FPG3_00925 LRR5

FPG3_00930 LRR5

FPG3_00935 LRR5

FPG3_00940 LRR5
These were resealed using SeqMan Pro to create one final
complete contig.
Genome annotation
The NCBI Prokaryotic Genome Annotation Pipeline was
used to predict protein coding genes, structural RNAs
(5S, 16S, 23S), tRNAs, and small non-coding RNAs [54].
Protein coding genes were predicted by protein align-
ment using ProSplign [55] where only complete align-
ments with 100% identity to a reference protein are kept
for final annotation. Frameshifted or partial alignments
were further analyzed by GeneMarkS+ [56] for further
analysis and gene prediction. A BLASTN search against a
reference set of structural RNA genomes from the NCBI
Reference Sequence Collection was conducted to find the
structural RNAs since they are highly conserved in closely
related prokaryotes. tRNAscan-SE was used to identify the
tRNAs [57]. Small RNAs were predicted using a BLASTN
search against sequences of selected Rfam families and
the results were refined further using Cmsearch [58]. Clus-
tered Regularly Interspaced Short Palindromic Repeats
(CRISPRs) were identified by searching the CRISPR data-
base with the CRISPRfinder program (http://crispr.u-psud.
fr/Server/) [59-62].
Genome properties
The 2,715,909 bp (32.75% G+C) genome of F. psychrophi-
lum ATCC 49418T contains 6 rRNA operons and 49 tRNA
genes and is predicted to encode 2329 proteins (Figure 3
TCC 49418

Product

Putative zinc metalloprotease

Psychrophilic metalloprotease Fpp1 precursor

Psychrophilic metalloprotease Fpp2 precursor

Putative neutral zinc metallopeptidase

Putative hemolysin D transporter

Putative hemolysin D transmembrane transporter

Mn2+ and Fe2+ transporter of the NRAMP family

Iron transport protein A

Iron transport protein B

Iron-regulated protein A precursor

ore ABC iron transporter system, permease component

ABC iron transporter system, binding protein precursor

Probable iron transporter

Hydroperoxidase with catalase and peroxidase activities

Cell surface protein precursor with leucine rich repeats

Cell surface protein precursor with leucine rich repeats

Cell surface protein precursor with leucine rich repeats

Cell surface protein precursor with leucine rich repeats
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and Table 3). No plasmids were identified during the anno-
tation process. The distribution of genes into COG func-
tions is shown in Table 4. When compared to the JIP02/86
strain, ATCC 49418T had fewer proteins classified as “not
in COGs” (43.8% vs. 47.5%) and had slightly more replica-
tion, repair, and recombination COGs (96 vs. 82). The two
strains differed little in other COG categories. The Average
Nucleotide Identity (ANI) between ATCC 49418T and
JIP02/86 was calculated to be 99.34% (+/−1.83%) and
99.37% (+/− 1.71%) one way and 99.43% (+/− 1.51%) two
way [63]. The estimated distance to distance hybridization
(DDH) values between the two strains was calculated to
be 96.20% (+/− 1.16%) and the distance was 0.0053.
The probability that DDH>70% (i.e. same species) is
97.48% [64].
Insights into the genome sequence
A number of studies have been done to determine the
pathogenesis of F. psychrophilum but, to date, the exact
mechanisms are still unknown [1]. Some putative and
previously characterized virulence factors are listed in
Table 5. Proteolytic enzymes are widely used by fish
pathogens to cause tissue damage and allow invasion of
the host [1]. In the F. psychrophilum ATCC 49418T gen-
ome there are four metalloprotease encoding genes
including a predicted zinc metalloprotease [FPG3_00455],
a predicted zinc peptidase [FPG3_06120] and the previ-
ously reported Fpp1 [66] and Fpp2 [67] metalloproteases.
Rainbow trout with RTFS are anemic and past studies
have reported that the red blood cells of rainbow trout
are partially lysed when infected by F. psychrophilum
[68,69]. Homologs of two RTX hemolysin transporters
(FPG3_06485, FPG3_10400) were identified, but did
not appear to be linked to any toxin or modification
genes [70]. Six iron transport genes were also identified;
these were anticipated since iron uptake is a well-known
characteristic of most pathogens. Moreover, recent re-
search has shown that attenuated F. psychrophilum strains
cultured under iron limiting conditions confer greater
protection to fish when used as an experimental vac-
cine [71]. A hydroperoxidase with predicted catalase
and peroxidase functions were also identified. In addition,
there are 11 cell surface proteins with leucine rich re-
peats that are predicted to be adhesins; several are
listed in Table 5. These were very similar to the ones
found in F. psychrophilum JIP/02. Further research is
required to determine what functions these adhesins
have and how they help F. psychrophilum bind to the
host.
Conclusion
Flavobacterium psychrophilum, the causative agent of
BCWD and RTFS in salmonid fishes, causes significant
economic losses in the aquaculture industry. The gen-
ome sequence of the ATCC 49418T strain will hopefully
provide new insights into virulence mechanisms and
pathogenesis of F. psychrophilum and help in the identi-
fication of suitable targets for vaccines and antimicrobial
agents; however, to do this much more analysis will be
required.

Abbreviations
BCWD: Bacterial cold water disease; RTFS: Rainbow trout fry mortality
syndrome.
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